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E-mail: chshjia@263.net and dutra@feg.unesp.br

Received 20 June 2006, in final form 18 July 2006
Published 5 September 2006
Online at stacks.iop.org/JPhysA/39/11877

Abstract
We present a new procedure to construct the one-dimensional non-Hermitian
imaginary potential with a real energy spectrum in the context of the position-
dependent effective mass Dirac equation with the vector-coupling scheme in
1+1 dimensions. In the first example, we consider a case for which the mass
distribution combines linear and inversely linear forms, the Dirac problem with
a PT-symmetric potential is mapped into the exactly solvable Schrödinger-like
equation problem with the isotonic oscillator by using the local scaling of the
wavefunction. In the second example, we take a mass distribution with smooth
step shape, the Dirac problem with a non-PT-symmetric imaginary potential is
mapped into the exactly solvable Schrödinger-like equation problem with the
Rosen–Morse potential. The real relativistic energy levels and corresponding
wavefunctions for the bound states are obtained in terms of the supersymmetric
quantum mechanics approach and the function analysis method.

PACS numbers: 03.65.Ge, 03.65.Pm, 03.65.Fd

1. Introduction

After Bender and Boettcher [1] for the first time investigated a non-Hermitian complex
potential with a real energy spectrum on the PT-symmetric quantum mechanics, there has
been growing interest in studying the non-Hermitian complex potentials in the setting of
the non-relativistic Schrödinger equation with a constant mass [2–4] and position-dependent
effective mass Schrödinger equation [5]. A potential V (x) is said to possess PT symmetry
if the relation V (−x) = V ∗ (x) or V (ξ − x) = V ∗ (x) exists under the transformation of
x → −x (or x → ξ − x) and i → −i, where P denotes parity operator (space reflection) and
T denotes time reversal. Non-Hermitian potential models have many applications in different
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research areas, for example, in the study of nuclear physics [6], quantum field theories [7] and
electromagnetic wave travelling in a planar slab waveguide [8].

Recently, some authors [9–13] have investigated the Klein–Gordon equation and Dirac
equation with a constant mass in the context of PT symmetry [1] and pseudo-Hermiticity
[3]. Mustafa [9] studied the exact energies for Klein–Gordon particle and Dirac particle
with a constant mass in the generalized complex Coulomb potential. Znojil [10] analysed
the Klein–Gordon equations in the setting of pseudo-Hermiticity. With the help of the
Nikiforov–Uvarov method which is based on reducing a second-order linear differential
equation to a generalized equation of hypergeometric type, Egrifes et al [11] investigated
the bound states of the Klein–Gordon and Dirac equations with a constant mass for the one-
dimensional generalized Hulthén potential within the framework of PT-symmetric quantum
mechanics. In [12], the authors investigated the bound-state energy equation for the PT-
symmetric versions of the Rosen–Morse well and Scarf II potential in the Klein–Gordon
theory with equally mixed potentials. Sinha and Roy [13] investigated the one-dimensional
solvable Dirac equation with non-Hermitian scalar and pseudoscalar interactions, possessing
real energy spectra. For the relativistic wave equations, one of recent developments is to study
the non-Hermitian complex potentials in the context of Klein–Gordon equation and Dirac
equation with a constant mass, another is to investigate the position-dependent effective mass
Klein–Gordon equations and Dirac equations for Hermitian potentials. It is usually expected
that, in the relativistic ambiance, the ordering ambiguity of the mass and momentum operators
should disappear. Notwithstanding, it is important to remember that there are difficulties to
define consistently from first principles the Dirac equation for fermions, and the Klein–Gordon
one for bosons, when we take into account spacetime dependence for the mass of the particle.
This happens due to the fact that physical particles in quantum field theory must belong to
an irreducible representation of the Poincarè algebra [14, 15]. One should be able to find
generators specifying the particle properties, usually its mass and helicity. However, it is
quite difficult to accomplish with this task in the case of spatially dependent masses. So, we
think that one should keep in mind that all of these usually thought as relativistic equations
for position-dependent masses should be taken as effective equations. However, this ordering
ambiguity is certainly present in the non-relativistic case [16]. In this regard, Alhaidari [17]
studied the exact solution of the three-dimensional Dirac equation for a charged particle
with spherically symmetric singular mass distribution in the Coulomb field. Vakarchuk [18]
investigated the exact solution of the Dirac equation for a particle whose potential energy and
mass are inversely proportional to the distance from the force centre. In [19], the authors
considered the smooth step mass distribution and solved approximately the one-dimensional
Dirac equation with the spatially dependent mass for the generalized Hulthén potential. In
[20], the authors investigated the exact solution of the one-dimensional Klein–Gordon equation
with the spatially dependent mass for the inversely linear potential. As far as we know, there
are only few contributions that give the solutions of the position-dependent effective mass
relativistic wave equations for some Hermitian potentials. Therefore, it is of considerable
interest to investigate the solution of the effective mass Klein–Gordon equation or effective
mass Dirac equation for a non-Hermitian complex potential with a real energy spectrum.

In this work, we propose a method to construct a one-dimensional exactly solvable non-
Hermitian potential with a real energy spectrum in the setting of the one-dimensional Dirac
equation with the vector-coupling scheme in the presence of position-dependent mass. In
order to illustrate the scheme, we give two examples. In the first example, we consider the
mass with linear and inversely linear forms in one spatial dimension and choose the smooth
step mass distribution in another example. With the help of the supersymmetric quantum
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mechanics approach and the function analysis method, we give the relativistic energy levels
and corresponding spinor wavefunctions for the bound states.

2. One-dimensional Dirac equation with position-dependent mass

Choosing the atomic units h/2π =h̄ = c = 1, the one-dimensional time-independent Dirac
equation with any given interaction potential V (x) in the vector-coupling scheme is given by
[19, 21] [

i
d

dx

(
0 −1
1 0

)
+ (E − V (x))

(
0 1
1 0

)
− M

(
1 0
0 1

)]
�(x) = 0, (1)

where E denotes the energy and M denotes the mass. The spinor wavefunction �(x) has
two components. We denote the upper and lower components by φ(x) and θ(x), respectively.
Equation (1) can be decomposed into the following two coupled differential equations:

−i
dθ

dx
+ [E − V (x)]θ − M(x)φ = 0, (2)

i
dφ

dx
+ [E − V (x)]φ − M(x)θ = 0. (3)

Eliminating the lower spinor component form equations (2) and (3), we obtain a second-order
differential equation, which contains first-order derivatives:

−d2φ

dx2
+ [2EV (x) − V 2(x) − i

dV (x)

dx
− i

1

M(x)

dM(x)

dx
(E − V (x))]φ

+
1

M(x)

dM(x)

dx

dφ

dx
= [E2 − M2(x)]φ. (4)

Now, we perform the following local scaling of the wavefunction:

φ(x) =
√

M(x)ϕ(x). (5)

Substituting expression (5) into equation (4), we obtain the following Schrödinger-like
equation satisfied by the new wavefunction ϕ(x):

−d2ϕ

dx2
+ Veff(x)ϕ = E2ϕ, (6)

where Veff(x) is defined as

Veff(x) = −V 2 − i
dV

dx
+ M2 + i

(
dM
dx

M

)
V + E

(
2V − i

(
dM
dx

M

))
− 1

2

(
d2M
dx2

M

)
+

3

4

(
dM
dx

M

)2

.

(7)

Here, we impose that the vector potential has the form

V (x) = i

2

1

M(x)

dM(x)

dx
. (8)

This is a non-Hermitian complex potential. Substituting equation (8) into equation (7) and
making some straightforward calculations, we obtain the effective potential in equation (6):

Veff(x) = M(x)2. (9)

At this point we note that one can obtain a usual bound-state energy spectrum from a system
with an imaginary potential and even with a mass with negative values along the spatial axis.

Given a position-dependent mass distribution function M(x), we can produce a
non-Hermitian imaginary potential by using equation (8) and solve the Schrödinger-like
equation (6) to obtain the relativistic energy spectra in the setting of the Dirac equation
with an imaginary potential and position-dependent mass.
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3. Examples

3.1. Linear and inversely linear mass distribution

For the first example, we choose the mass distribution with linear and inversely linear forms
in one spatial dimension:

M(x) = M0

( |x|
d

+
d

|x|
)

, M0, d > 0, (10)

where d is a constant with space dimension. The mass varies from the value M = +∞ for
x = −∞ to the value M = 2M0 for x = −d and to the value M = +∞ for x = 0, and also
changes from the value M = +∞ to the value M = 2M0 and to the value M = +∞ in the
range of 0 � x < +∞. With the help of equation (8), we have an imaginary potential given
by

V (x) = i

2

(x2 − d2)

x(x2 + d2)
. (11)

This potential is singular at x = 0. The imaginary potential (11) shows V (−x) = V ∗ (x),
thus, this potential is PT-symmetric. Substituting equation (10) into equation (9) and using
equation (6), we obtain a Schrödinger-like equation

−d2ϕ

dx2
+ M2

0

(
x2

d2
+

d2

x2

)
ϕ = Ẽϕ, (12)

where Ẽ = E2 − 2M2
0 . Equation (12) shows that the effective mass one-dimensional Dirac

equation with the PT-symmetric potential (11) can be mapped into the exactly solvable
Schrödinger-like equation with the potential of a harmonic oscillator plus a centrifugal
barrier in one-dimensional space. For the second-order differential equation with the form of
equation (12), we [20] have dealt with it by using the supersymmetric quantum mechanics
method [22] and the shape-invariance approach [23] in the setting of Schrödinger equation
for the isotonic harmonic oscillator and in the setting of Klein–Gordon equation with
position-dependent mass for the inversely linear scalar potential. We write the ground-state
wavefunction ϕ0(x) in the form

ϕ0(x) = exp

(
−

∫
W(x) dx

)
, (13)

where W(x) is called a superpotential in supersymmetric quantum mechanics. Substituting
equation (13) into equation (12) yields the following equation for W(x):

W 2(x) − dW(x)

dx
= M2

0

(
x2

d2
+

d2

x2

)
− Ẽ0, (14)

where Ẽ0 is the ground-state energy. Equation (14) is a nonlinear Riccati equation. Putting
the superpotential W(x) in the form

W(x) = Ax +
B

x
, (15)

and substituting this expression into equations (13), we obtain the unnormalized ground-state
wavefunction ϕ0(x):

ϕ0(x) = x−B e− 1
2 Ax2

. (16)

In this work, we will deal with bound-state solutions, i.e., the wavefunction ϕ0(x) must satisfy
the boundary conditions that ϕ0(x) is zero at x = 0 and ϕ0(x) becomes zero when x → ±∞.
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Thus, we have the restriction conditions: B < 0 and A > 0. Substituting equation (15) into
equation (14), we obtain a set of equations

2AB − A = −Ẽ0, (17a)

A2 = M2
0

/
d2, (17b)

B2 + B = d2M2
0 . (17c)

Solving equations (17a)–(17c), we obtain

Ẽ0 = A − 2AB, A = M0/d, B =
−1 −

√
1 + 4d2M2

0

2
. (18)

In terms of the superpotential W(x) given in equation (15), we can construct the following
two supersymmetric partner potentials:

Veff+(x) = W 2(x) +
dW(x)

dx
= 2AB + A + A2x2 +

1

x2
(B2 − B), (19a)

Veff−(x) = W 2(x) − dW(x)

dx
= 2AB − A + A2x2 +

1

x2
(B2 + B). (19b)

These two partner potentials Veff+(x) and Veff−(x) possess the following relationship:

Veff+(x, a0) = Veff−(x, a1) + R(a1), (20)

where a0 = B, a1 is a function of a0, i.e., a1 = f (a0) = a0 − 1, and R(a1) is independent of
x, R(a1) = 4A(a0 − a1). From equation (20), we know that the two partner potentials Veff+(x)

and Veff−(x) have the similar shapes and they are shape-invariant potentials in the senses of
[23]. For the potential Veff−(x), we use the shape-invariance approach [23] to determine the
energy spectra, which are given by

Ẽ
(−)
0 = 0, (21a)

Ẽ(−)
n =

n∑
k=1

R(ak) = R(a1) + R(a2) + · · · + R(an)

= 4A(a0 − a1) + 4A(a1 − a2) + 4A(a2 − a3) + · · · + 4A(an−1 − an)

= 4A(a0 − an)

= 4nA (21b)

where the quantum number n = 0, 1, 2, . . . . From equations (14) and (19b), we have the
following relation:

Veff(x) = M2
0

(
x2

d2
+

d2

x2

)
= Veff−(x, a0) + Ẽ0. (22)

With the help of equations (18), (21) and (22), we obtain the solution for Ẽ in equation (12):

Ẽ = Ẽ0 + Ẽ(−)
n = A − 2AB + 4nA. (23)

Using the expressions Ẽ = E2 −2M2
0 and applying equation (18) in equation (23), we find the

following relativistic energy spectrum for the one-dimensional PT-symmetric potential (11)
in the setting of the Dirac theory with the mass distribution form given in equation (10):

En = ±
[

2M2
0 +

M0

d

(
4n + 2 +

√
1 + 4d2M2

0

)]1/2

. (24)
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In the case of the spatial dependence of the mass, we can regularize the problem of the Dirac
equation with the PT-symmetric singular potential (11) and obtain the bound-state energy
spectra, avoiding nonphysical divergences.

With the help of the superpotential W(x) given in equation (15) and the ground-state
wavefunction ϕ0(x) given in equation (16), one can obtain the unnormalized excited-state
wavefunctions by using the operator approach proposed by Dabrowskafor et al [24]. The
corresponding normalization coefficients can be obtained by applying the explicit recursion
relations on the normalization coefficients of wavefunctions given in [25]. Fakhri and
Chenaghlou [26] also constructed the recursion relations on the coefficients of associated
hypergeometric functions (not the wavefunctions). Here, we use the conventional function
analysis method to obtain the unnormalized excited wavefunctions. Substituting equation (23)
into equation (12), it becomes the following equation:

−d2ϕ(x)

dx2
+ M2

0

(
x2

d2
+

d2

x2

)
ϕ(x) = (4nA + A − 2AB) ϕ(x). (25)

Writing the wavefunction ϕ(x) as ϕ(x) = x−B e− 1
2 Ax2

L(x), equation (25) can be reduced to
the following equation satisfied by L(x):

d2L(x)

dx2
− 2

(
Ax +

B

x

)
L(x) + 4nAL(x) = 0. (26)

Introducing the new variable y = Ax2, equation (26) turns to the following form:

y
d2L(y)

dy2
+

(
−B − 1

2
+ 1 − y

)
dL(y)

dy
+ nL(y) = 0, (27)

Equation (27) is the well-known differential equation satisfied by the Laguerre polynomials
L

(−B−1/2)
n (Ax2), hence the wavefunction ϕ(x) can be expressed as

ϕn(x) = x−B e− 1
2 Ax2

L(−B−1/2)
n (Ax2). (28)

Applying equations (5) and (28) and making some parameter replacements given in
equation (18), we obtain the unnormalized upper spinor wavefunction corresponding to energy
level En:

φn(x) =
√

M0

( |x|
d

+
d

|x|
)

x
1+
√

1+4d2M2
0

2 e− 1
2

M0
d

x2
L

( 1
2

√
1+4d2M2

0 )
n

(
M0

d
x2

)
. (29)

By using the differential and recursion properties of the Laguerre polynomials, we can obtain
the lower spinor wavefunction corresponding to energy level En from equation (3):

θn(x) = 1

M0
( |x|

d
+ d

|x|
)


(

En − i
M0

d
x + i

(
2n +

1

2
+

1

2

√
1 + 4d2M2

0

)
1

x

)
φn(x)

− 2i


n +

√
1 + 4d2M2

0

2


 1

x
φn−1(x)


 . (30)

3.2. Smooth step mass distribution

In the next application we consider the smooth step mass [19],

M(x) = M0(1 + η tanh αx), (31)
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where η is a small parameter and η satisfies |η| < 1. The mass increases from the value
M = M0(1 − η) for x = −∞ to the value M = M0(1 + η) for x = +∞. The significant
variations are occurring in the range of − 1

α
< x < 1

α
, i.e., M(−1/α) ∼= M0(1 − 0.762η),

M(1/α) ∼= M0(1 + 0.762η). Substituting equation (31) into equation (8), we obtain a non-
Hermitian imaginary potential

V (x) = i

2

αη sech2 αx

1 + η tanh αx
. (32)

With the help of equations (31), (9) and (6), we obtain a Schrödinger-like equation

−d2ϕ

dx2
− (V1 sech2 αx + V2 tanh αx)ϕ = Ẽϕ, (33)

where we have defined the parameters V1 = η2M2
0 , V2 = −2ηM2

0 and Ẽ = E2 − M2
0 (1 + η2).

Equation (33) shows that the effective mass one-dimensional Dirac equation with the non-
Hermitian potential (32) can be mapped into the exactly solvable Schrödinger-like equation
with the Rosen–Morse potential. We write the ground-state wavefunction ϕ0(x) in the form

ϕ0(x) = exp

(
−

∫
W(x) dx

)
. (34)

Substituting equation (34) into equation (33), we obtain the following equation satisfied by
the superpotential W(x):

W 2(x) − dW(x)

dx
= −(V1 sech2 αx + V2 tanh αx) − Ẽ0, (35)

where Ẽ0 is the ground-state energy. Equation (35) is a nonlinear Riccati equation. Taking
the superpotential W(x) in the fashion,

W(x) = Q1 +
Q2

2
(1 − tanh αx), (36)

and substituting this expression into equation (35), we obtain

Q2
1 = −Ẽ0 − V2, (37a)

2Q1Q2 + 2αQ2 = −4V1 + 2V2, (37b)

Q2
2 − 2αQ2 = 4V1. (37c)

Solving the set of equations (37a)–(37c), we have

Q1 = V2

Q2
− Q2

2
, (38a)

Q2 = α

[
1 −

√
1 +

4V1

α2

]
. (38b)

Substituting equation (36) into equations (34) and using equation (38a), we obtain the
unnormalized ground-state wavefunction ϕ0(x):

ϕ0(x) = e− V2
Q2

x
(cosh αx)

Q2
2α . (39)

For the bound-state solutions, the wavefunction ϕ0(x) must satisfy the boundary condition
that ϕ0(x) becomes zero when x → ±∞. In order to make the wavefunction ϕ0(x) satisfy the
regularity conditions, we can obtain from equation (39) that Q2 < 0 and |V2/Q2| < |Q2/2|.
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With the help of equations (37a) and (38a), the corresponding ground-state energy and
superpotential can be expressed as

Ẽ0 = −
[

V2

Q2
− Q2

2

]2

− V2, (40)

W(x) =
(

V2

Q2
− Q2

2

)
+

Q2

2
(1 − tanh αx). (41)

By using the superpotential W(x) given in equation (41), we can construct the following two
supersymmetric partner potentials:

Veff+(x) = W 2(x) +
dW(x)

dx
=

(
V2

Q2
− Q2

2

)2

+
2V2 − Q2

2 − 2αQ2

2
(1 − tanh αx)

+
Q2

2 + 2αQ2

4
(1 − tanh αx)2, (42a)

Veff−(x) = W 2(x) − dW(x)

dx
=

(
V2

Q2
− Q2

2

)2

+
2V2 − Q2

2 + 2αQ2

2
(1 − tanh αx)

+
Q2

2 − 2αQ2

4
(1 − tanh αx)2. (42b)

The partner potentials Veff+(x) and Veff−(x) satisfy the following relationship:

Veff+(x, a0) = Veff−(x, a1) + R(a1), (43)

where a0 = Q2, a1 is a function of a0, i.e., a1 = f (a0) = a0 + 2α, and R(a1) is independent of
x, R(a1) = (

V2
a0

− a0
2

)2 − (
V2
a1

− a1
2

)2
. Equation (43) shows that the partner potentials Veff+(x)

and Veff−(x) have are shape-invariant potentials in the senses of [23]. The energy spectra of
the potential Veff−(x) are given by

Ẽ
(−)
0 = 0, (44a)

Ẽ(−)
n =

n∑
k=1

R(ak) = R(a1) + R(a2) + · · · + R(an)

=
(

V2

a0
− a0

2

)2

−
(

V2

a1
− a1

2

)2

+

(
V2

a1
− a1

2

)2

−
(

V2

a2
− a2

2

)2

+ · · · +

(
V2

an−1
− an−1

2

)2

−
(

V2

an

− an

2

)2

=
(

V2

a0
− a0

2

)2

−
(

V2

an

− an

2

)2

=
(

V2

Q2
− Q2

2

)2

−
(

V2

Q2 + 2nα
− Q2 + 2nα

2

)2

, (44b)

where the quantum number n = 0, 1, 2, . . . . From equations (35) and (42b), we get the
following relation:

Veff(x) = −(V1 sech2 αx + V2 tanh αx) = Veff−(x, a0) + Ẽ0. (45)

By using equations (40), (44) and (45), we obtain the solution for Ẽ in equation (33):

Ẽ = Ẽ0 + Ẽ(−)
n = −

[
V2

Q2 + 2nα

]2

− (Q2 + 2nα)2

4
. (46)
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Substituting the expression of Q2 given in equation (38b) into equation (46), we obtain the
following expression:

Ẽ = − V 2
2

4α2
(
n + 1

2 − 1
2

√
1 + 4V1

α2

)2
− α2

(
n +

1

2
− 1

2

√
1 +

4V1

α2

)2

. (47)

With the help of the expressions V1 = η2M2
0 , V2 = −2ηM2

0 and Ẽ = E2 − M2
0 (1 + η2) in

equation (47), we obtain the relativistic energy spectrum for the imaginary potential (32) in
the setting of the Dirac theory with the smooth step mass distribution,

En = ±
[
M2

0 (1 + η2) − η2M4
0

α2(n + δ1)2
− α2(n + δ1)

2

]1/2

, (48)

where δ1 = 1
2

(
1 −

√
1 + 4η2M2

0
α2

)
.

Substituting equation (47) into equation (33), we have the following equation:[
d2

dx2
+

(
η2M2

0 sech2 αx − 2ηM2
0 tanh αx

)]
ϕ(x) =

[
η2M4

0

α2 (n + δ1)
2 + α2 (n + δ1)

2

]
ϕ(x).

(49)

Introducing the new variable z = −tanh αx and writing the wavefunction ϕ(x) as ϕ(x) =(
1−z

2

)−p(
1+z

2

)−w
P (z), equation (49) can be reduced to the following equation satisfied by

P(z):

(1 − z2)
d2P

dz2
+ [−2w + 2p − (2 − 2p − 2w)z]

dP

dz
+ n(n − 2p − 2w + 1)P = 0, (50)

where p = 1
2

[
n + δ1 − ηM2

0
α2

1
n+δ1

]
and w = 1

2

[
n + δ1 + ηM2

0
α2

1
n+δ1

]
. Equation (50) is the well-

known differential equation satisfied by the Jacobi polynomials P
−2p,−2w
n (z), hence the

wavefunction ϕ(x) can be expressed as

ϕn(x) =
(

1 + tanh αx

2

)−p (
1 − tanh αx

2

)−w

P −2p,−2w
n (−tanh αx). (51)

Applying the definition of the hyperbolic functions and making some algebraic manipulations,
we may rewrite the wavefunction ϕ(x) in the fashion

ϕn(x) = (cosh αx)(p+w) eα(w−p)xP −2p,−2w
n (−tanh αx). (52)

With the help of equations (5) and (52), we obtain the unnormalized upper spinor wavefunction
corresponding to energy level En,

φn(x) =
√

M0(1 + η tanh αx)(cosh αx)(p+w) eα(w−p)xP −2p,−2w
n (−tanh αx). (53)

In order to make the upper spinor component φn(x) satisfying the asymptotic boundary
condition, φn(±∞) = 0, the exponent of cosh αx must be smaller than zero, i.e., p + w < 0
and |p + w| > |w − p|. Further, we can guarantee the real energy spectra En in equation (48)

if and only if M2
0 (1 + η2) � η2M4

0
α2(n+δ1)2 + α2(n + δ1)

2. Consequently, we obtain the following
restrictions for the quantum number n and the parameters α, η and M0:

n <

√
1

4
+

η2M2
0

α2
− 1

2
, (54a)

∣∣∣∣∣∣n +
1

2
−

√
1

4
+

η2M2
0

α2

∣∣∣∣∣∣ >

∣∣∣∣∣∣
ηM2

0

α2

1

n + 1
2 −

√
1
4 + η2M2

0
α2

∣∣∣∣∣∣ , (54b)
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M0(1 + η) �

∣∣∣∣∣∣
ηM2

0

α

1

n + 1
2 −

√
1
4 + η2M2

0
α2

+ α


n +

1

2
−

√
1

4
+

η2M2
0

α2




∣∣∣∣∣∣ . (54c)

By using the differential and recursion properties of the Jacobi polynomials, we can determine
the lower spinor wavefunction corresponding to energy level En from equation (3):

θn(x) = 1

M0(1 + η tanh αx)

[(
En + i

(
α(w − p) +

nα(p − w)

n − p − w

+ α(−n + w + p) tanh αx

))
φn(x) − iα(n − 2p)(n − 2w)

n − p − w
φn−1(x)

]
. (55)

4. Conclusion

In this work, we present a new method to construct the one-dimensional non-Hermitian
imaginary potential with a real energy spectrum in the setting of the position-dependent
effective mass Dirac equation with the vector-coupling scheme in 1+1 dimensions. In the first
example of the mass distribution with linear and inversely linear forms in one spatial dimension,
the problem is mapped into the exactly solvable Schrödinger-like equation problem with the
isotonic oscillator. When the mass distribution is taken to have the form of the smooth step, the
corresponding problem is mapped into the exactly solvable Schrödinger-like equation problem
with the Rosen–Morse potential. The imaginary potential (11) possesses non-Hermitian PT
symmetry. Although the imaginary potentials (11) and (32) are non-Hermitian, both of them
have real bound-state energy spectra. Moreover, there are no bound states in the Schrödinger
equation for the imaginary potential (32); this is due to the fact that the imaginary part of
potential (32) behaves like a δ-like potential barrier. A similar case exists for a kink-like
potential which is able to confine neutral fermions. Very recently, de Castro and Hott [27]
found that there are exact bound-state solutions in the one-dimensional Dirac equation with
the kink-like potential. However, this potential is characterized by the absence of bound
states in the non-relativistic theory because it gives rise to a ubiquitous repulsive potential.
With the help of the supersymmetric quantum mechanics approach and the function analysis
method, we obtain the relativistic bound-state energy levels and the corresponding spinor
wavefunctions for the imaginary potentials (11) and (32).
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